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On the basis of the course of the log (-yJ!y2) and EP('!Jj2 ·303RT)joxi = Gil (x1) curves, various 
definitions of "normal" system were proposed. By means of them the limits of applicability of 
the two-constant and three-constant Redlich-Kister equation were determined. For orientation 
it is possible to use the following rules: The one-constant Redlich-Kister equation may be applied 
to systems with x0 = 0·5; the two-constant one to systems with x0 E (0·4, 0·6); the three
constant one to systems with x0 E (0·3, 0·7) , where x0 is the coordinate of minimum of the depen
dence Gll(x 1). The applicability of the Redlich-Kister equation can be found out as well in 
terms of the values of limiting activity coefficients. Not even the three-constant Redlich-Kister 
equation is able to describe the behaviour of a homogeneous system with higher value of lim log y2 

xz-+>0 

than "'1·2 with only one minimum on the Gll(x1) curve. Besides, a test is proposed in the 
work which allows to predetermine the possibility of successful application of the three-constant 
Redlich-Kister equation when knowing the position of minimum on the Gll(x 1) curve regardless 
of the mentioned definitions of "normal" system. 

As to the systems which exhibit large positive deviations from Raoult's law it is important to 
investigate the quantity o2('!J j 2·303RT)/oxi which will be denoted, in short, by Gil, for in a homo
geneous system, according to the theory of thermodynamic stability, it must hold1

-
3 

Gll ~ 0. (I) 

Schematic course of Gll(x1) is presented in Fig. 1. 

In case of systems which are already at the end of limited miscibility, G 11 is relatively small in 
the vicinity of the minimum and its dependence on composition is very flat. Sometimes it occurs4 

that a system behaving in this manner is not described in qualitatively correct way by the empirical 
relation for '!JE in terms of its parameters determined by correlation, i.e. the relation is obtained by 
correlating which does not fulfil Eq. (1) in the whole concentration range. The fundamental problem 
of correlation of measured data is the application of a respective empirical or semi-empirical 
equation. The adequacy of equation is judged practically only by the agreement of directly mea
sured and calculated values. Such a way of judging the equation or computed parameters is 
insufficient for the very reason that it refers, among others, to the given set of data only. We 
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696 Novak, Suska, Matous, Pick: 

assume that every system makes different demands on the empirical relation for ~E and not 
every relation is sufficiently flexible to describe the given facts. If we want to use a certain equation, 
we should use the proper number of constants with different systems, provided that the equation 
allows it. Usual statistical tests defining the corresponding number of adjustable parameters 
need not always give a unique answer5 •6 , apart from the fact that they consider the significance 
of the number of parameters with respect to the minimized quantity without taking into account, 
at least qualitatively, the course of derivatives. 

In this work, the applicability of the three-constant Redlich-Kister equation 7 to 
strongly non-ideal systems is defined on keeping the qualitative characteristics of the 
course of log (yJy 2 ) = Ql(x1) and Gll(x1), above all the position of minimum on 
the curve Gll(x 1), i.e. the values of x0 , (G11).

0
• When analyzing this equation, we 

got out of the relation 

Further relations needed for analyzing are given in Appendix. 
In further considerations we will get out of the knowledge of the concentration 

dependence of Gll, or strictly speaking, of the position of its minimum (Fig. 1). 
The relations for the determination of G 11 on the basis of measured vapour-liquid 
equilibrium data can be found in the literature1

-
3 and are summarized in previous 

paper4
• Let us assume that Gll takes its minimum value(Gll)xo at the composition 

x 1 = x0 • We suppose x0 to be from the interval 0 to 0·5. At this composition the 
conditions must be fulfilled 

G11 

(G11),0 1---~-

(Gll)x,=xo = (Gll)x0 ' 

(Glll)x,=xo = 0 • 

(3) 

(4) 

J.O 

FIG. 1 

Schematic Representation of Gll on Com
position 
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Correlation of Strongly Non-Ideal Systems 697 

The parameters b, c can be determined from conditions (3) and (4) according to the 
relations 

c = (1 - 2x0) {4d- 0·0362/[x~(l - x0)
2]}, (5) 

b = -1-(Gll)xo + 0·2171[x0(1 - x0)]-
1 

- 0·1085(1 - 2x0)
2 . 

. x02(1 - x0)-
2 + d[7 - 24x0 (1 - x0)]. (5a) 

By substituting Eqs (5) and (5a) into Eq. (2) we obtain, for the ratio of activity 
coefficients, the relation 

log (Yd'h) = Q1 = 

= {0·6514/[x0(1- x0)] - [9·212x~(1 - x0)
2]- 1 

- 0·5(G11)x0 } (x2- X 1) + 
+ (2x0 - 1) (6x1x2 - 1) [27·636x~(1- x0Y]- 1 + 
+ d{(x 2 - x1) [7 - 24x0(1 - x0)] - 4(6x 1x2 - 1) (2x0 - 1) + 
+ (x 1 - x2) (8x 1x2 - 1)} = / 1 + d/2 • (6) 

10 

1 
2 

2 

-0·5 

-10 

0·5 ().5 

FIG. 2 

Dependence of log (y1fy 2) on x 1 for Various x0 , d and (Gll)xo = 0 
a) x

0 
= 0·16, b) x 0 = 0·20, c) x 0 = 0·30, d)x0 = 0·40. 1 d = 0, 2 d= 0·2, 3d = 0·3, 4d = -0·1. 
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698 Novak, Suska, Matous, Pick: 

The relations for 'liE, Gll, and G111 are presented in Appendix again. 

Course of Curves log (Y 1/y 2 ) 

Now we are investigating the concentration dependence of log (ytfy 2 ) (to shorten 
the record we will use the denotation Ql), i.e. the relation (6) in dependence on the 
parameters x 0 , (Gll)xo• d. In Figs 2 and 3a, the calculated dependences are represented 
for x 0 = 0-4, 0·3, 0·2, 0·16, 0·25 and for (G11).

0 
= 0 (the critical isotherm) and for 

different values of parameter d. On the other hand, in Fig. 4 the experimental course 
of Ql is represented for three systems being close to limited miscibility for various 
values of x 0 • The systems in question are as follows: 2-methyl-2-butene-acetoni
trile10 with experimental values x 0 "'0·4 and (G11).

0
,..., 0·05, tetrahydrofuran

-water11 with x 0 "' 0·24 and (Gll)xo "' 0·01, and 2-methylpyridine-water9 with 
x 0 = 0·1 and (Gll)xo,..., 0·005. It is evident from Fig. 1 that with a decrease in x 0 

(at fixed d and (Gll)x0), the minimum appears on curves Ql first and further, at 
higher concentrations, Q1 takes even positive values, which would correspond to an 
S-shaped dependence of 'liE on composition. On comparing the courses of Ql in 
Fig. 2 with those determined experimentally (Fig. 4), it is evident that the calculated 
courses are not "normal" in some cases. For our further considerations let us define 
two following "normal" courses of the Ql(x1) curves: 

logll 
~2 

-1 

1. ThecurveQ1 is a monotone decreasing function in whole concentration range, i.e. 

o(Ql)/ox 1 ~ o. (7) 

0257 
>; 

I- ow. / / l I c // i I 
L_ 

05 1-0 0 0 Q.5 XI 1-0 

FIG. 3 

Dependence of log (ytfy2 ), Gil and y 1 on Composition of the Liquid Phase for Systems with 
x0 = 0·25 and (Gll)xo = 0 and with Different Values of the Parameter d 
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Correlation of Strongly Non-Ideal Systems 699 

As to the systems with high positive deviations from Raoult's law verging towards 
limited miscibility, it must hold in the vicinity of x0 : 

Gll < (Gll)* = 0·4343/(x 1x2), (8) 

where (Gll)* is the value of Gll which would correspond to the ideal system. For 
Gll we can also write 

(9) 

With respect to Eqs (8) and (9) the ratio of activity coefficients must decrease with 
x 1 in the vicinity of x 0 • We will understand "normal" systems as such which keep 
this property in whole concentration range. It follows from the Gibbs-Duhem 
equation that the condition (7) is in binary system equivalent to the requirement 
a log yJax; ~ 0. 

By combining the relations (7) and (A-8) (see Appendix) we get 

48d(x 1 - x0)
2 

- 0-4343(1 - 2x0)(x1 - x0)/[(x~(l - x0)2] + 

+ 0·4343/[xo(l - Xo)] - (Gll)xo ~ 0. (10) 

It follows from the discussion of Eq. (10) that for x 0 ~ x0 the relation must be valid 

where 

FIG. 4 

Experimental Dependence of log (ytfyz) 
for Three Systems 

() 2-Methyl-2-butene(l)-acetonitrile(2), 
• tetrahydrofuran(l)-water(2), o 2-methyl
pyridiqe(l)-water(2) . 

coll ection c zechoslov. Chern. c ommun. [Vol. 39) [1974) 

(11) 



700 Novak, Suska, Matous, Pick: 

d0 = 0·4343(1- 2x0 )
2 {192x~(l -x0)

3 [1 - 2·303(Gll)x0 x0(1 - x0)]}-
1 

' (lla) 

and for x 0 ~ x0 it must hold 

(12) 

where 

The composition x0 is given by the relation 

4x0 - 1 - 4·606(Gll)x0 (1 - x0 ) x5 = 0. (12b) 

For (Gll)xo = 0 we get x0 = 0·25 by solving Eq. (12b) and for (G11),0 = 0·5 we 
obtain x0 = 0·283. 

The minimum values of the parameter d warranting the monotone course of Ql, 
calculated from Eq. (lla) or (12a) are given in Fig. 5 and are denoted by dmon· 

2. In this work we discuss systems with positive deviations from Raoult's law for 
which holds · 

q;E > 0. (13) 

From this point of view we can define the "normal" systems as such systems which 
satisfy the relation (13) in whole concentration range. Unlike the first case an extreme 
is admitted on the curve Q1 = Ql(x1) but the course must not be such that q;E 
should take negative values. This requirement can be expressed by* 

lim Ql =lim log (ytfy 2 ) = -logy~ = 0. (14) 
Xt---+1 Xt-+1 

From Eqs (6) and (14) we get that in this case the equation must hold 

d ~ d5 = {3 (G11),0 x~(l - x 0Y + 0·4343[2 - x 0 - 9x0 (1 - x0)]} • 

. {24x~(l - x 0Y [3 - 2x0 - 6x0(1 - x0)]}. (15) 

The values of d, for various x 0 and (G11),
0 

are given in Fig. 5. If the nonequality 
(15) was not fulfilled the dependence q;E = q;E(x 1) would show an S-shaped course. 

The case lim Ql = 0, contingently local extremes which would be at variance with Eq. 
Xt-+0 

(13) are considered less probable and they will not be discussed further. 
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Correlation of Strongly Non-Ideal Systems 701 

Course of Gil Curves 

In Figs 2 and 3a the curves Ql = Ql(x 1) are plotted for various values of the para
meter d. It is evident at first sight that higher values of the parameter d make this 
course "more normal" (compared both with the experimentally found course (Fig. 4) 
and with the above-mentioned definitions). For example at x 0 = 0·2 the value 
d = 0·2 causes that the ratio of activity coefficients is already a monotone decreasing 
function. With lower values of x0 the parameter d must be still higher. Let us examine 
now how the quantity Gll responds to various values of d at constant x 0 and (G11),

0
• 

The effect of the parameter d, not only on the course of Ql, Gll, but also on the 
composition of the vapour phase (the calculation was carried out for the vapour 
pressure ratio P?jP~ = 3 and the ideal behaviour of the vapour phase) can be seen 
in Figs 3a- 3c ( x0 = 0·25, ( G 11 ),

0 
= 0). 

FIG. 5 
Limiting Values of Parameter din Dependence on x0 

-- (G ll)x0 = 0, - - - (G ll)x0 = 0·5 . 
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702 Novak, Suska, Matous, Pick: 

According to the course of Gll(x 1) (Fig. 3b), the following limiting values of 
parameter d will be distinguished: 

A. The curve Gll is convex in whole concentration range, i.e. it holds: 

(16) 

From Eq. (A-5) it follows that d must fulfil the relation 

d ~ dkon = 0·4343/3 = 0·1447, (17) 

It has not been hitherto known exactly how far the relation (16) is justified with 
homogeneous systems; Eq. (16) holds, however, atthe critical point1

-
3

. 

B. At the point B (Fig. 3b) at which holds 

(18) 

the value of d8 is given by the relation 

d8 = (0·4343/48) [x; 3 + (1 - x8)-
3
], (19) 

where x8 is given by the equation 

[(1- 2x0 ) x~(l - x8 )2 - (1 - 2x8 ) x~(l - x0 )
2

] x02(1 - x 0t 2 + 
+ [x~ + (1 - x8 )

3
] (x0 - x8 ) [x8 (1 - x8 )]-

1 = 0. (20) 

The values of d8 in dependence on x 0 are given in Fig. 5. 

C. At still higher values of d, a further local minimum appears on the curve Gll. 
In this case the equations must be satisfied: 

x1 = Xc > Xo' 

(Gll)x1 =xc = (Gll)c, 

' (G111)x1 =xc = 0 · 

On combining Eqs (A-8), (A-9) and (21) we get 

(Gll)c = (Gll)xo + 0·4343(x0 - xc) {x01(1 - x0)-
1 [(2x0 - 1) . 

. Xo
1(1 - Xo)- 1 + (1 - Xo- xc) Xc

1(1 - xc)- 1] + 

(21) 

+ t[(2xc - 1) xC" 2(l - xc)- 2 + (l - 2x0 ) x02(1 - 2x0t 2
]}. (22) 

Collection czechos lov. Chern. Commun. (Vol. 39) (1974] 



Correlation of Strongly Non-Ideal Systems 703 

Eq. (22) is simplified very much in the special case when it holds 

{Gll)c = {Gll)x0 • (23) 

From Eq. (22) after rearrangement (xc = 1 - x 0 ) we then obtain 

(24) 

The values of de determined by the relation (24) are summarized in Fig. 5. We assume 
that the number of systems which would exhibit properties corresponding to this 
alternative is small. On the y- x curves such behaviour should become evident by 
three inflex points (Fig. 3c with d = 0·25). With these systems the existence of two 

1·2 ~-+--·71-~::::::':::=:2s~~~;;o;;;;:::::.::::::::;::=d 
log/, 

-0·41---+- --- -t------+---- --r-- -----j 

0·1 0·2 0·3 O·l. 0·5 

FIG. 6 

Permitted Values of logy~ in Dependence on x 0 for Various Values of Parameter d 

-- (Gll)x
0 

= 0, - -- (Gll)x0 = 0·5. 
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704 Novak, Suska, Matous, Pick: 

azeotropes contingently even two different heterogeneous regions (as far as 
(Gll)xo < 0) would be possible. 

D. At still higher values of d the minimum at the point Xc becomes deeper and can 
have even negative values. At yet highervalues of d it occurs that the point x 1 = x0 

is changed into the inflex point and finally a maximum appears at the point x0 • 

These alternatives will not be investigated. 

Limits of Applicability of the Three-Constant Redlich- Kister Equation 

Let us investigate first the applicability of the two-constant equation, i.e. the case 
d = 0. In this special case the functionf1 in Eq. (6) gives directly the logarithm of 
the ratio of activity coefficients and the course of G 11 is always convex. On the basis 

log a'~ 

dmon 

0·4 ~---+-----f---4--~~~~r-------~~~~-~~~~ 
dmon 

0·1 0·2 0·3 0·4 0·5 

FIG . 7 

Permitted Values of log)'~ in Dependence on x0 for Various Values of Parameter d 

- - (G ll)xo = 0, - - - (G 11),0 = 0·5. 
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Correlation of Strongly Non-Ideal Systems 705 

of Figs 2, 3 and 5 and of the foregoing discussion it is possible to draw the following 
conclusions: 

A. From the alternatives given in Fig; 2,/1 has the form which fulfils the condition 
(7)only at x 0 = 0·4, i.e. the course of Ql is a moijotone decreasing function. From 
the rehition (lla) we get that at (Gll)xo = 0 or (G11) ,

0 
= 0·5 it will be always like 

thirt as far as x 0 > 0·333 or x 0 > 0·362, respectively. In case that x 0 is lower than 
the given values and the course of the ratio of activity coefficients is monotone 
decreasing, it is not to be assumed that the two-constant equation will be sufficient. 

R If the measured data fulfil the less rigid condition (13), i.e. there is a local 
minimum on the curve Ql not leading, however, to an S-shaped course of the <§E 

curve,it is possible to show, using Eq. (15) (and it follows from Fig. 5, too) that in 

FIG. 8 

Values of x
5 

and [log (ytfy2)]5 in Dependence on x0 and (Gll)x0 
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706 Novak, Suska, Matous, Pick : 

this case the least value of x 0 which may be still described by the two-constant equa
tion is x 0 = 0·26 at (Gll) xo = 0 or x 0 = 0·28 at (Gll)xo = 0·5 . 

C. An interesting feature of the relation ( 6) is the fact that at higher values of 
(Gll)xo• i.e. in case of a "more homogeneous" and at first sight more easily correlat
able systems, less "normal" courses of the ratio of activity coefficients are obtained 
in sense of the requirements of Eqs (11) and (13). It means that the systems with 
(Gll)xo < 0, i.e. heterogeneous systems behave, as for the Redlich-Kister equation, 
"more normal" and can be more easily correlated. 

The applicability of the three-constant Redlich-Kister equation is connected 
closely with the possible values of the parameter d. It follows from the foregoing 
discussion that the parameter d, with respect to the course ofQl, cannot be arbitrarily 
small and, with respect to the course of Gll, arbitrarily large. The above defined 
limiting parameters are represented in Fig. 5. It is eviqent from the figure that at 
(G11),

0 
= 0 (the critical isotherm) and at the monotone course ofQl and the convex 

course of G 11, the equation cannot be applied to systems with x 0 < 0·235. The range 
of applicability still decreases with higher values of (Gll)xo· Further alternatives 
for (Gll)xo = 0 or (Gll) xo = 0·5 can be as well determined using this figure. 

More clear idea of the applicability of the Redlich- Kister equation can be some
times provided in terms of the limiting values of activity coefficients which are given 
in Figs 6 and 7 for differently defined parameters d. From the figures it is again 
possible to read the maximum and minimum values of the limiting activity coef
ficients logy~ and logy~ for various values of x 0 and (Gll)xo· 

The limits of applicability of the Redlich- Kister equation which can be read from 
Fig. 5 are the maximum possible ones. We assume, however, that some difficulties 
will occur in actual cases already for x 0 < 0·4 with the two-constant equation and 
for x 0 < 0·3 for the three-constant one. For the systems with x 0 < 0·3 it is necessary 
to use more constants. However, in contradistinction of Kehlen8 we do not suppose 
that in such cases it would not be possible to use the Redlich- Kister equation at all. 

In foregoing discussion we defined the minimum and maximum values of the 
parameter d for the given x 0 and (Gll)xo and the minimum and maximum values 
of limiting activity coefficients on the basis of requirements on the course of the 
curves Q 1 and G 11. It may occur that a system will fulfil these criteria but in spite 
of it the use of the three-constant Redlich- Kister equation will not be successful. 
To judge this alternative the following test can serve which is independent of the 
value of parameter d. It follows from Figs 2 and 3a that the curves Q1 at the given 
x 0 and ( G 11 )xo intersect at a certain point whose parameters are denoted by x 1 = xs; 
[log (ytfy2)]x, =x. = (Ql)5 • It follows from Eq. (6) that this case occurs as far as the 
equation 

!2 = 0 (25) 

is fulfilled. 
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On solving this equation we get 

X 5 = Xo + 1{0·25 + 0·5x0 - 1·5x0(1 - x0) - x~). (26) 

In Fig. 8 the dependence of X5 on x 0 is represented together with the value of the ratio 
of activity coefficients corresponding to this point of intersection, i.e. (Q1)5 • It is 
evident that in case of systems for which the experimentally found logarithm of the 
ratio of activity coefficients at x1 = X 5 would not correspond to the value read from 
Fig. 8 (with respect to experimental errors), the Redlich- Kister equation with three 
constants is not to be used. In some cases the reverse procedure is more evident, 
when we look for (Gll)xo for a giveJ;Ilog (yi/y2). As far as the given requirements are 
not fulfilled (the proposed test represented in Fig. 8 or the limiting activity coefficients 
exceed the limits defined in Figs 6 and 7) it is possible to assume the failure of the 
three-constant Redlich-Kister equation when correlating those systems, which was 
stated in the foregoing paper4

• 

In case of the systems with x 0 < 0·3 it is probably necessary to use higher number 
of constants. When optimizing them, we meet with another difficulty for it is not 
possible to expect that we will be successful in obtaining, by usual calculation proce
dures, such a set of constants which would exhibit smooth (i.e. without inflex points) 
course of "§ and its derivatives. Let us consider the following extreme case of the 
ten-constant Redlich- Kister equation. In case of Q1 (Eq. (A-2)) with the value of 
all constants equal to one, the maximum contribution of single addends will be in 
absolute value the same (at x 1 = 0 or x 1 = 1 ). In case of the second to fourth 
derivatives the limiting maximum contribution of the i-th order derivatives , Ll;, of 
single terms is given in Table I. Provided that we require the contribution of the third 
term in the expression for the second-order derivative to be comparable with the 
value of the first term, it should hold IC3 1 fiC 1 1 = ldlflbl = 1/5, and so on. If we 
consider still higher derivatives we should get even stricter limitations. The least-

TABLE I 

Maximum Contributions of Single Terms of the Redlich-Kister Expansion to the i-th Order 
Derivative of Q with Respect to Composition 

4 10 

£11 1 I 1 

L1z 2 10 14 18 22 26 30 34 38 

£13 0 12 48 108 192 300 432 588 768 I 002 

£14 0 0 96 480 1 344 2 280 5 280 8 736 13 440 20 684 
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708 Novak, Suska, Matous, Pick: 

square method itself and from it derived numerical procedures for determining 
constants do not enable us to hold the constants in corresponding limits. The results 
of such correlation are then the curves of derivatives of <'§ which are often without 
any physical meaning. 

Appendix I 

From Eq. (2) we get 

rgE/ (2 ·303RT) = Q = x 1x 2 ± Cj(x1 - x2)j- 1 , (A-1) 
j=l 

oQjox 1 = Ql = log (ytfyz) = ± C/x1- Xz)j-Z [2(j + 1) x 1x z - 1] , (A-2) 
j=1 

82 ( rg/(2 ·303RT)) jox i = Gil= 0·4343j(x1x 2) + 

+ 2 ± Cj(x1 - x2)j-~ [1- 2j+ 2j(j + 1) x 1x 2], 
j = l 

83( rg/ (2-303RT))/8xf = Gill= 0-4343(x1 - x2)/(xix~) + 

(A-3) 

+ 4 ± Cj(x1 - x2)j- 4 (j- 1) [2j(j + 1) x 1x 2 - 3(j- 1)], (A-4) 
j=l 

a\ rg/(1·303RT)) j ox1 = Gl111 = 0·8686(x1 3 + xz 3) + 

+ 16 ± C/x1 - x 2)j-S (j - 1) [x 1x 2 j(j + 1) (j- 2)-
j=1 

- 2(j- 2) (j- 3/ 2)], (A-5) 

where s denotes the number of constants. On using three constants and substituting for C1 (C1 =b), 
C2 (C2 = c) and C3(C3 = d) from Eqs (5) and (6) into the relations (A-J) - (A-4) we get these 
Ielations 

Q = x 1x 2 { - !(Gll)x
0 

+ 0·2171[x0(1- x 0)]-
1 + 

+ (2x0 - 1) [13 · 818x~(l- x 0 )
2
]-

1 [(1 + x 1)/3- x 0 ] + 

+ d[7 - 24x0 (1 - x0)- 4(2x0 - 1) (x1 - x 2) + (x1 - x 2 )
21}, (A-6) 

Q1 =log (ytfy2 ) = {0·6514x0 1(1- x0)- 1 - [9·212x~(l - x 0)
2
]-

1
-

- !(Gll)x
0

} (xz- x 1) + (2x0 - 1) (6x1x 2 - 1) [27 · 636x~(l- x0)
2
]-

1 + 

+ d{(x2 - x 1) [7- 24x0(1- x0)]- 4(6x1x2 - 1) (2x0 - 1) + 

+ (x1 - x2) (8x1x 2 - 1)} = / 1 + dfz, (A-7) 

Gll = (G11)x
0 

+ 0·4343(x0 - x 1) {(1- x 0 - x 1) [x 1x 2x 0 (l - x0)]-
1 + 

+ (2x0 - 1) [x~(l - x0 )
2r 1}- 48d(x0 - x 1)

2
, (A-8) 

Glll = 0·4343(x1 - x2)/(xix~)- (2x0 - 1) x 02 (1- x 0)-
2 + 

+ 96d(x0 - x 1) . (A-9) 
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LIST OF SYMBOLS 

b, c, d I 
c

1
, c

2
, c

3 
t parameters of Redlich-Kist~r equation 

'l/ molar Gibbs energy 
'll,~ molar excess Gibbs energy 
G II (GIll, and so on) second-order (third-order, and so on) derivative of molar Gibbs energy 

with respect to the composition, devided by 2·303RT 
(G II )xo ordinate of minimum of Gl1(x1) curve 
Q = '!!Ej(2·303RT) dimensionless excess Gibbs energy 
Ql (Ql1) first-order (second-order) derivative of Q with respect to composition 
(QI);;' value of Ql corresponding to x 1 = x 5 

R gas constant 
T absolute temperature 
x; mole fraction of component i 
x 0 coordinate of minimum of Gll-x1 curve 
x, composition defined by the relation (25) 
i' ; activity coefficient of component i 
I'~ limiting activity coefficient of component i 
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